KANSAS STATE

Glycemic Response to Two Doses of Resistant Starch Type 4: A Randomized Controlled Crossover Trial

Trevor J. Steele*, Clodualdo C. Maningat, Paul A. Seib, Mark D. Haub, & Sara K. Rosenkranz Physical Activity and Nutrition Clinical Research Consortium

Department of Food, Nutrition, Dietetics, and Health | Kansas State University

Results

Introduction

- Resistant starch has been shown to beneficially affect glycemic and insulinemic responses in the post-prandial period^{1,3}.
- Additionally, different types of resistant starches have shown different glycemic responses².
- Standard testing protocols require 50g of available carbohydrate for a treatment to be acceptable for nutrient content claims⁴.
- Consumption of resistant starch type 4 (RS4) has not been investigated, leaving a gap in the literature regarding the effects of RS4 consumption on potential health benefits.

Study Goals:

- Investigate the postprandial effects of resistant starch type 4
- Compare glycemic and insulinemic response between two doses of resistant starch type 4

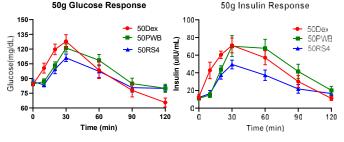
Methods

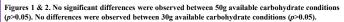
Participants: 15 apparently healthy college aged participants **Design:** Randomized controlled crossover trial

- Participants consumed the same meal prior to each visit with a minimum 72hr washout period between visits
- Glucose and insulin collected via indwelling catheter in a forearm vein

Table 1. Available carbohydrate and dietary fiber amounts by condition.

Condition	Available	Amount of	Dietary	Dietary
	carbohydrate (g)	food by weight	fiber (g)	fiber (%)
50DEX	50.00	~296mL	0.00	0.00
50PWB	50.00	91.7g	12.0	13.1
50RS4	50.00	106.4g	29.7	27.9
30DEX	30.00	~178mL	0.00	0.00
30PWB	30.00	55.00g	7.2	13.1
30RS4	30.00	63.80g	17.8	27.9
0.00				


Oral Glucose Tolerance Test:


Consume						
Bar U	Ţ	ī			Ī	
0 10	20	30	60	90	120	
Table 2. Subject characteristics (Mean \pm SD)						
			All Par	ticipants (n=14)		
Age (yr)			2	26.1 ± 4.6		
Height (ci	n)		1	74.0 ± 8.8		
Weight (k	g)		7	6.1 ± 16.8		
BMI (kg/m ²)		24.9 ± 4.0				

 KANSAS STATE
 Physical Activity and Nutrition

 UNIVERSITY
 Clinical Research Consortium

IXCSUILS								
Table 3. Means \pm SD and <i>p</i> -value for testing parameters.								
Parameter	50g Conditions	30g Conditions	<i>p</i> -value					
Glucose iAUC (mg/dL x 2hr)	50Dex: 2112 ± 1567 50PWB: 2030 ± 1373 50RS4: 1229 ± 1142	30Dex: 1781 ± 1624 30PWB: 828.6 ± 594.1 30RS4: 630.2 ± 687.9	50CHO: 0.0541 30CHO: 0.0018*					
Insulin iAUC (µIU/mL x 2hr)	50Dex: 3339 ± 2020 50PWB: 3968 ± 2454 50RS4: 2046 ± 928.7	30Dex: 2400 ± 1689 30PWB: 1855 ± 665.7 30RS4: 1115 ± 832.2	50CHO: 0.0339* 30CHO: 0.0005*					
Peak Glucose (mg/dL)	50Dex: 134.5 ± 21.58 50PWB: 125.9 ± 14.00 50RS4: 113.5 ± 14.91	30Dex: 132.0 ± 25.04 30PWB: 114.9 ± 18.33 30RS4: 104.0 ± 13.85	50CHO: 0.0056* 30CHO: 0.0003*					
Peak Insulin (µIU/mL)	50Dex: 73.64 ± 35.87 50PWB: 80.81 ± 42.52 50RS4: 53.89 ± 20.05	30Dex: 68.00 ± 39.70 30PWB: 59.39 ± 25.75 30RS4: 44.18 ± 20.83	50CHO: 0.0105* 30CHO: 0.0139*					
50 chuses Beerenes								

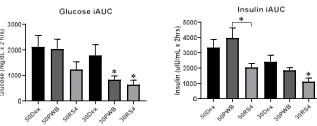
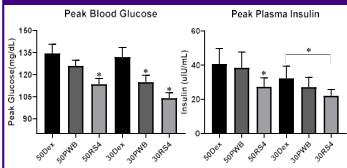



Figure 3. No significant differences were observed between 50g available carbohydrate conditions (p=0.054). Both 30g available carbohydrate bars had a lower glucose iAUC compared to the 30g dextrose control (p<0.05). However, no differences were observed between the 30g bars (p>0.05). Figure 4. 50RS4 resulted in a lower insulin iAUC compared to 50PWB (p<0.05) with no additional differences observed between 50g conditions (p>>0.05). NORS4 had a lower insulin iAUC compared to both 30PWB and 30Dex (p<0.05). No differences were observed between 30g conditions (p>0.05).

Results

Figures 5 & 6. Peak blood glucose was significantly lower for 50RS4 compared to 50Dex and 50PWB (ps<0.05). Both 30g bars were significantly lower than the carbohydrate matched control (ps<0.05), however no differences were observed between the 30g bars (p>0.05). Peak plasma insulin was significantly lower for 50RS4 compared to 50Dex and 50PWB (ps<0.05). 30RS4 had lower peak plasma insulin compared to 30Dex, however no other differences were observed between groups (ps>0.05).

Discussion

- Resistant starch type 4 consumption resulted in lowered glucose iAUC at the 30g available carbohydrate level and lowered insulin iAUC at both the 50g and 30g available carbohydrate doses compared to a carbohydrate matched dextrose beverage and puffed wheat nutrition bar.
- Additionally, resistant starch type 4 resulted in lowered peak blood glucose compared to a dextrose control beverage and a puffed wheat nutrition bar at the 50g and 30g available carbohydrate doses.
- Insulin decreased by ~25% or more for iAUC and peak insulin following RS4 consumption compared to dextrose and puffed wheat among all doses, suggesting an increased efficiency dealing with similar glucose responses.
- The effects of RS4 consumption on insulin needs to be investigated further to fully elucidate the potential health benefits of RS4 consumption.

Acknowledgements

This project was supported by MGP Ingredients, Inc.

References

- Al-Tamimi EK, Seib PA, Snyder BS, & Haub MD. Consumption of cross-linked resistant starch (RS4_{XL}) on glucose and insulin responses in humans. J Nutr Metab. 2010; 651063.
- Haub MD, Hubach KI, Al-Tamimi EK, Ornelas S, & Seib PA. Different types of resistant starch elicit different glucose responses in humans. J Nutr Metab. 2010; 230501.
- Haub, MD, Louk, JA, Lopez, TC. Novel resistant potato starches on glycemia and satiety in humans. J Nutr Metab. 2012;478043.
- 4.U.S. Food and Drug Administration. Code of Federal Regulations Title 21. 2017; Title 21, Volume 2. ***E-mail: tsteele13@ksu.edu**